

Laser Mikrophon

Einzigartiges akustisches Messsystem zur Prozesskontrolle oder zerstörungsfreien Werkstoffprüfung

Anwendung

Dies ist ein robustes, membranfreies, breitbandiges Mikrophon, entwickelt für Akustik-Anwendungen in Gasen im mPa-bis-Pa-Bereich. Der Frequenzgang reicht bis 4 MHz.

Es eignet sich neben der reinen akustischen Vermessung vor allem für Messungen in der Prozesskontrolle und der zerstörungsfreien Werkstoffprüfung. Jeder Prozess hat die für ihn typischen Geräusche, die weit über unseren hörbaren Frequenzbereich hinausgehen. So erzeugt z. B. die Füllung eines kleinen Fläschchens im Pharmabereich typische Geräusche, wenn ein bestimmter Füllstand erreicht wird.

Jeder kennt der Effekt, wenn ein Weinglas einen kleinen Riss hat, dass der Klang des Glases beim Anstoßen dumpfer klingt als die ohne Riss. Genauso kann man z.B. ein Werkstück oder eine Schweißnaht mit einem Laserpuls anregen und hört dann auf die typischen Klänge.

Wir bieten hier neben dem eigentlichen Laser Mikrophon auch die Peripherie aus Datenerfassungssystem und Analysesoftware an.

Mit Hilfe der patentierten Technologie ist der Sensor fast immun gegen Beschädigungen durch Hochdruckamplituden. Die akustische Erkennung ist um den Faktor 10 größer und um den Faktor 10 kostengünstiger als der heutige Stand der Technik. Es bietet eine bisher nicht dagewesene überlegene Messbandbreite.

Technologie

Für die Erkennung von Schallwellen verwenden herkömmliche Mikrofone Membranen oder andere bewegliche Teile als Vermittler zwischen der ankommenden akustischen und der resultierenden elektrischen Menge. Bei akustischen Ultraschallsensoren auf der Basis von piezoelektrischen Kristallen ist der Ansatz ähnlich: Die akustische Welle verformt den Kristall mechanisch. Im

Gegensatz dazu ist die patentierte Idee hinter dem Laser Mikrophon, eine andere, völlig andere Eigenschaft des Klanges auszunutzen: Die Tatsache, dass der Ton die Lichtgeschwindigkeit ändert.

In einem starren Fabry-Pérot-Laserinterferometer, bestehend aus zwei miniaturisierten Spiegeln, ändert der Schalldruck den Brechungsindex der Luft. Dies ändert die optische Wellenlänge und die Lichtdurchlässigkeit, die folglich zu dem jeweiligen elektrischen Signal führt. Im Gegensatz zu herkömmlichen Mikrofonen ist das optische Mikrofon das weltweit erste Mikrofon ohne bewegliche Teile. Es sind keine mechanisch bewegbaren oder körperlich verformbaren Teile beteiligt. Infolgedessen zeigen die Sensoren eine überzeugende Frequenzbandbreite, die frei von mechanischen Resonanzen ist. Das Sensorprinzip ist sehr empfindlich. In der Tat können Brechungsindexänderungen unter 10⁻¹⁴ mit dieser Technologie erkannt werden. Dies entspricht Druckänderungen von 1 µPa.

Es gibt vier verschiedene Ausführungen für unterschiedliche Empfindlichkeiten.

Technische Daten.

Sensor:

Mikrophon: fasergekoppeltes Laser Mikrophon
Messmethode: membranfrei, optisch, kontaktfrei

Empfindlicher Bereich: 60 µm x 1,2 mm, durch den Laserstrahl bestimmt

Elektromagnetische Störungen (EMI): keine Messmedium: Gas

Max, Druck / Frequenzbereich:

Von 4 Versionen

Sensitive:

High sensitive:

400 Pa, 10 Hz – 1 MHz

High sensitive:

400 Pa, 50 kHz – 2 MHz

Ultra high sensitive: 40 Pa, 50 kHz – 2 MHz Hyper sensitive: 20 Pa, 50 kHz – 4 MHz

Selbstrauschen, BW 1 Hz bei 100 kHz: 50 µPa (1 kHz) oder kleiner

Eigenrauschen: 50 mPa über die gesamte Bandbreite oder kleiner

Empfindlichkeit: 10 mV/Pa (1kHz, 50 Ohm)

Richtungsempfindlichkeit: omnidirektional Kalibrierung: kalibriert

Größe des Sensorkopfes: Durchmesser: 5 mm; Länge: 38 mm

Gewicht des Sensorkopfes: 10 g

Faser Kabellänge: 5 m (andere auf Anfrage, max. 150 m)

Betriebstemperatur Sensor: -20°C bis 100°C (0 F bis 210 F)

Laserkontrolleinheit:

Sensor Ausgangsspannung: ± 15 V (hohe Impedanz), ± 7,5 V (50 Ohm)

Anschluss Sensorausgangsspannung: BNC Sensor-Ausgangsimpedanz: 50 Ohm

Größe der Steuereinheit: 220 mm x 330 mm; Höhe: 95 mm

Gewicht der Steuereinheit: 8 kg

Stromversorgung (Signalaufbereitung): 120/230 V ± 5%, 50/60 Hz

Leistungsaufnahme: <50 W

Betriebstemperatur Steuergerät: 15 °C bis 30 °C (60 F bis 85 F)